1,180 research outputs found

    Strong Field Gravity and X-Ray Observations of 4U1820-30

    Get PDF
    The behavior of quasi-periodic oscillations (QPOs) at frequencies near 1 kHz in the x-ray emission from the neutron star x-ray binary 4U1820-30 has been interpreted as evidence for the existence of the marginally stable orbit, a key prediction of strong-field general relativity. The signature of the marginally stable orbit is a saturation in QPO frequency, assumed to track inner disk radius, versus mass accretion rate. Previous studies of 4U1820-30 have used x-ray count rate as an indicator of mass accretion rate. However, x-ray count rate is known to not correlate robustly with mass accretion rate or QPO frequency in other sources. Here, we examine the QPO frequency dependence on two other indicators of mass accretion rate: energy flux and x-ray spectral shape. Using either of these indicators, we find that the QPO frequency saturates at high mass accretion rates. We interpret this as strong evidence for the existence of the marginally stable orbit.Comment: accepted to the Astrophysical Journal Letters, 7 page

    Hubble flow variance and the cosmic rest frame

    Get PDF
    We characterize the radial and angular variance of the Hubble flow in the COMPOSITE sample of 4534 galaxies, on scales in which much of the flow is in the nonlinear regime. With no cosmological assumptions other than the existence of a suitably averaged linear Hubble law, we find with decisive Bayesian evidence (ln B >> 5) that the Hubble constant averaged in independent spherical radial shells is closer to its asymptotic value when referred to the rest frame of the Local Group, rather than the standard rest frame of the Cosmic Microwave Background. An exception occurs for radial shells in the range 40/h-60/h Mpc. Angular averages reveal a dipole structure in the Hubble flow, whose amplitude changes markedly over the range 32/h-62/h Mpc. Whereas the LG frame dipole is initially constant and then decreases significantly, the CMB frame dipole initially decreases but then increases. The map of angular Hubble flow variation in the LG rest frame is found to coincide with that of the residual CMB temperature dipole, with correlation coefficient -0.92. These results are difficult to reconcile with the standard kinematic interpretation of the motion of the Local Group in response to the clustering dipole, but are consistent with a foreground non-kinematic anisotropy in the distance-redshift relation of 0.5% on scales up to 65/h Mpc. Effectively, the differential expansion of space produced by nearby nonlinear structures of local voids and denser walls and filaments cannot be reduced to a local boost. This hypothesis suggests a reinterpretation of bulk flows, which may potentially impact on calibration of supernovae distances, anomalies associated with large angles in the CMB anisotropy spectrum, and the dark flow inferred from the kinematic Sunyaev-Zel'dovich effect. It is consistent with recent studies that find evidence for a non-kinematic dipole in the distribution of distant radio sources.Comment: 37 pages, 9 tables, 13 figures; v2 adds extensive new analysis (including additional subsections, tables, figures); v3 adds a Monte Carlo analysis (with additional table, figure) which further tightens the statistical robustness of the dipole results; v4 adds further clarifications, small corrections, references and discussion of Planck satellite results; v5 typos fixed, matches published versio

    Status of the FLUTE RF System Upgrade

    Get PDF
    FLUTE (Ferninfrarot Linac- Und Test-Experiment) is a compact versatile linac-based accelerator test facility at KIT. Its main goal is to serve as a platform for a variety of accelerator studies and to generate strong ultra-short THz pulses for photon science. It will also serve as an injector for a Very Large Acceptance compact Storage Ring (VLA-cSR), which will be realized at KIT in the framework of the compact STorage Ring for Accelerator Research and Technology (cSTART) project. To achieve acceleration of electrons in the RF photoinjector and LINAC (from FLUTE) with high stability, it is necessary to provide stable RF power. For this goal, an upgrade of the existing RF system design has been proposed and is currently being implemented. This contribution will report on the updated RF system design and the commissioning status of the new RF system components

    RXTE Studies of Long-Term X-ray Spectral Variations in 4U 1820-30

    Get PDF
    We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1820-30 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996-7. 4U 1820-30 is an ``atoll'' source X-ray burster (XRB) located in the globular cluster NGC 6624. It is known to have an 11 minute binary period and a ~176 day modulation in its 2--12 keV flux. Observations were made with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study flux-related spectral changes. There are clear correlations between our fitted spectral parameters and both the broad-band (2--50 keV) flux and the position in the color-color diagram, as described by the parameter S_a introduced by Mendez et al. (1999). In addition, we find a strong correlation between the position in the color-color diagram and the frequencies of the kilohertz quasi-periodic oscillations (kHz QPOs) reported by Zhang et al. (1998). This lends further support to the notion that evidence for the last stable orbit in the accretion disk of 4U 1820-30 has been observed. For a model consisting of Comptonization of cool photons by hot electrons plus an additional blackbody component, we report an abrupt change in the spectral parameters at the same accretion rate at which the kHz QPOs disappear. For a model consisting of a multicolor disk blackbody plus a cut-off power law, we find that the inner disk radius reaches a minimum at the same accretion rate at which the kHz QPO frequency saturates, as expected if the disk reaches the last stable orbit. Both models face theoretical and observational problems when interpreted physically for this system.Comment: 39 pages, 11 figures, accepted to the Astrophysical Journa

    Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters

    Get PDF
    Knowledge of the diet and trophic ecology of apex predators is key for the implementation of effective ecosystem as well as species-based management initiatives. Using a combination of stomach content data and stable isotope analysis (δ15N and δ13C) the current study provides information on size-based and sex-specific variations in diet, trophic position (TP) and foraging habitat of tiger sharks (Galeocerdo cuvier) caught in the KwaZulu-Natal Sharks Board bather protection program. This study presents the longest time-series and most detailed analysis of stomach content data for G. cuvier worldwide. Prey identified from 628 non-empty stomachs revealed a size-based shift in diet. Reptiles, birds, mysticetes, and large shark species increased in dietary importance with G. cuvier size, concomitant with a decrease in smaller prey such as batoids and teleosts. Seasonal and decadal shifts in diet driven primarily by changes in the importance of elasmobranchs and mammal (cetacean) prey were recorded for medium sized (150-220 cm) G. cuvier. Both stomach content and stable isotope analysis indicated that G. cuvier is a generalist feeder at the population level. Size-based δ13C profiles indicated a movement to offshore foraging habitats by larger G. cuvier. Calculated TP varied by method ranging from 4.0 to 5.0 (TPSCA for stomach contents) and from 3.6 to 4.5 (TPscaled and TPadditive for δ15N). Large (> 220 cm) G. cuvier did not feed at discrete trophic levels, but rather throughout the food web. These data provide key information on the ecological role of G. cuvier to improve the accuracy of regional food web modelling. This will enable a better understanding of the ecological impacts related to changes in the abundance of this predator

    Post-critical set and non existence of preserved meromorphic two-forms

    Full text link
    We present a family of birational transformations in CP2 CP_2 depending on two, or three, parameters which does not, generically, preserve meromorphic two-forms. With the introduction of the orbit of the critical set (vanishing condition of the Jacobian), also called ``post-critical set'', we get some new structures, some "non-analytic" two-form which reduce to meromorphic two-forms for particular subvarieties in the parameter space. On these subvarieties, the iterates of the critical set have a polynomial growth in the \emph{degrees of the parameters}, while one has an exponential growth out of these subspaces. The analysis of our birational transformation in CP2 CP_2 is first carried out using Diller-Favre criterion in order to find the complexity reduction of the mapping. The integrable cases are found. The identification between the complexity growth and the topological entropy is, one more time, verified. We perform plots of the post-critical set, as well as calculations of Lyapunov exponents for many orbits, confirming that generically no meromorphic two-form can be preserved for this mapping. These birational transformations in CP2 CP_2, which, generically, do not preserve any meromorphic two-form, are extremely similar to other birational transformations we previously studied, which do preserve meromorphic two-forms. We note that these two sets of birational transformations exhibit totally similar results as far as topological complexity is concerned, but drastically different results as far as a more ``probabilistic'' approach of dynamical systems is concerned (Lyapunov exponents). With these examples we see that the existence of a preserved meromorphic two-form explains most of the (numerical) discrepancy between the topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure

    Status of Schottky Diagnostics in the ANKA Storage Ring

    Get PDF
    The status of longitudinal and transverse Schottky observation systems for the synchrotron light source ANKA is presented. ANKA regularly operates in a dedicated low alpha mode with short bunches for the generation of coherent THz radiation. The Schottky measurement results are shown and compared with theoretical predictions for the regular as well as the different stages of the low alpha mode of operation. Special care had to be taken to control and mitigate the impact from strong coherent lines of the short bunches on the signal processing chain. The system setup is shown, expected and unexpected observations as well as applications are discussed
    corecore